Abstract

A new method has been developed for improving the overall immobilization efficiency of phosphorus (P) in sediment. A capping agent (lanthanum modified bentonite, LMB) was sprinkled on the sediment surface to prevent the release of P in the top sediment layer. Meanwhile, an oxidizing agent (calcium nitrate, CN) was injected into the sediment layer (~5 cm) to immobilize labile P in deep sediment layers. High-resolution sampling techniques, including diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper) were employed to investigate the fine-scale changes of labile and/or soluble nitrogen, P, sulfide and iron in sediments, respectively. The results showed that the combined application of LMB and CN had significant advantages over the individual treatments. The average concentrations of soluble reactive phosphorus (SRP) (0.01 mg/L) in the overlying water after a 68-day incubation were only 10%, 21% and 4% for the CK, LMB and CN treatments, respectively. Furthermore, the immobilization effect caused by the combined treatment reached from the sediment-water interface to a depth of 60 mm in the sediment, and the effective depth was much >20 mm caused by LMB treatment. The concentrations of SRP in the sediment profile were also lower than those of the other treatments. The results of this work indicate that the combined application of capping and oxidizing agents is a promising method to control water eutrophication by preventing the release of P from both the top and deep sediment layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call