Abstract

A new method to measure trap characteristics in crystalline silicon solar cells is presented. Important parameters of traps including energy level, total concentration of trapping centers and capture cross-section ratio of hole to electron are deduced using the Shockley—Read—Hall theory of crystalline silicon solar cells in base region. Based on the as-deduced model, these important parameters of traps are determined by measuring open-circuit voltages of silicon solar cells under monochromatic illumination in the wavelength range 500–1050 nm with and without bias light. The effects of wavelength and intensity of bias light on the measurement results are also discussed. The measurement system used in our experiments is very similar to a quantum efficiency test system which is commercially available. Therefore, our method is very convenient and valuable for detecting deep level traps in crystalline silicon solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.