Abstract

BackgroundSmall intestine ischemia can be seen in various conditions such as intestinal transplantation. To further understand the pathologic disruption in ischemia–reperfusion injury, we have developed a method to measure fluid changes in the intestinal lumen of rats. MethodsTwo 10-cm rat intestine segments were procured, connected to the terminal apertures of a perfusion device, and continuously infused with 3 mL of HEPES solution (control solution) containing 50 μM of fluorescein isothiocyanate (FITC)-inulin. The perfusion device consists of concentric chambers that contain the perfused bowel segments, which are maintained at 37°C via H2O bath. The individual chamber has four apertures as follows: two fill and/or drain the surrounding HEPES solution on the blood side of the tissue. The others provide flow of HEPES solution containing FITC-inulin through the lumens. The experimental intestine was infused with the same solution with 100 μM of Forskolin. A pump continuously circulated solutions at 6 mL/min. Samples were collected at 15-min intervals until 150 min and were measured by the nanoflourospectrometer. ResultsA mean of 6-μM decrease in the FITC-inulin concentration in the Forskolin-treated experimental intestine was observed in comparison with that in the control intestine. The FITC-inulin count dilution in the experimental intestine is a result of an increase of fluid secretion produced by the effect of Forskolin, with P values <0.0001. ConclusionsWe demonstrate that it is possible to measure luminal fluid changes over time using our new modified perfusion system along with FITC-inulin to allow real-time determinations of fluid and/or electrolyte movement along the small intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.