Abstract
Abstract A new method is proposed to explain and monitor wear behaviour based on energy dissipation. The wear of a W–25 wt%Cu composite against 52100 steel was used to demonstrate this approach with pin-on-disc tests conducted under three normal loads. An energy-dependent criterion, namely, specific wear volume (wear volume/dissipated energy (mm 3 /J)), was defined to evaluate the wear of the composite. The s pecific wear volume can be used as a substitute for the traditional wear rate due to the simultaneous expression of several wear parameters and because of its strong dependence on the wear mode. The s pecific wear volume appears to be constant in any particular “wear mode” regardless of the active “wear processes”. In the wear of this composite, processes such as particle pull-out, mechanically mixed layer (MML) formation, crack propagation and delamination were observed. But, combination of these processes in each test had identical specific wear volumes . Thus, all of these wear processes were considered to be consecutive stages of the same wear mode: fatigue wear. The amount of dissipated energy and the volumetric loss increased with increasing normal load. Also, changing the normal load changed the rate of energy dissipation per unit sliding distance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.