Abstract
We present a computer method to determine nucleic acid secondary structures. It is based on three steps: 1) the search for all possible helical regions relied on a mathematical approach derived from the convolution theorem; it uses a tetradimensional complex vector representation of the bases along the sequence; 2) a 'tree' search for a set of minimum free energy structures, by the aid of an approximate energy evaluation to reduce the computer time requirements; 3) the exact calculation and refinement of the energies. A method to introduce the experimental data and reach an arrangement between them and the free energy minimization criterion is shown. In order to demonstrate the confidence of the program a test on four RNA sequences is performed. The method has computer time requirement proportional to N2, where N is the length of the sequence and retrieves a set of optimal free energy structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.