Abstract

Cells run on initiation of protein-protein interactions, which are dynamically tuned spatially and temporally to modulate cellular events. This tuning can be physical, such as attaching the protein to a cargo or protein complex, thereby altering its diffusive properties, or modulating the distance between protein pairs, or chemical, by altering the proteins’ conformations (e.g., nucleotide binding state of an enzyme, post-translational modification of a protein, etc.). Because a dynamic and changing subset of proteins in the cell could be in any specific state, ensemble measurements are not ideal—to untangle which of the factors are important, and how, we need single-molecule measurements. Experimentally, until now we have not had good tools to precisely measure initiation of such protein-protein interactions at the single-molecule level. Here, we develop a new method to measure dynamics of initial protein-protein interactions, allowing measurement of how properties such as the distance between proteins, and their tethered length can modulate the rate of interactions. In addition to precise measurement distance dependent motor-MT rebinding dynamics, we demonstrate the use of a dithered optical trap to measure dynamic motor-MT interactions and further discuss the possibilities of this technique being applicable to other systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.