Abstract
AbstractAlthough the testing method for fracture toughness KIC has been implemented for decades, the strict specimen size requirements make it difficult to get the accurate KIC for the high‐toughness materials. In this study, different specimen sizes of high‐strength steels were adopted in fracture toughness testing. Through the observations on the fracture surfaces of the KIC specimen, it is shown that the fracture energy can be divided into 2 distinct parts: (1) the energy for flat fracture and (2) the energy for shear fracture. According to the energy criterion, the KIC values can be acquired by small‐size specimens through derivation. The results reveal that the estimated toughness value is consistent with the experimental data. The new method would be widely applied to predict the fracture toughness of metallic materials with small‐size specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.