Abstract

It is well known that neurons differentiated from SH-SY5Y cells can serve as cell models for neuroscience research; i.e., neurotoxicity and tolerance to morphine in vitro. To differentiate SH-SY5Y cells into neurons, RA (retinoic acid) is commonly used to produce the inductive effect. However, the percentage of neuronal cells produced from SH-SY5Y cells is low, either from the use of RA treatment alone or from the combined application of RA and other chemicals. In the current study, we used CM-hNSCs (conditioned medium of human neural stem cells) as the combinational inducer with RA to prompt neuronal differentiation of SH-SY5Y cells. We found that neuronal differentiation was improved and that neurons were greatly increased in the differentiated SH-SY5Y cells using a combined treatment of CM-hNSCs and RA compared to RA treatment alone. The neuronal percentage was higher than 80% (about 88%) on the 3rd day and about 91% on the 7th day examined after a combined treatment with CM-hNSCs and RA. Cell maturation and neurite growth of these neuronal cells were also improved. In addition, the use of CM-hNSCs inhibited the apoptosis of RA-treated SH-SY5Y cells in culture. We are the first to report the use of CM-hNSCs in combination with RA to induce neuronal differentiation of RA-treated SH-SY5Y cells. Our method can rapidly and effectively promote the neuronal production of SH-SY5Y cells in culture conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call