Abstract

Ice nucleating particles (INP) initiate heterogeneous ice nucleation in mixed-phase clouds, influencing cloud phase and onset temperatures for ice formation. Determination of particle types contributing to atmospheric INP populations requires isolation of the relatively rare INP from a total particle sample, typically followed by time-consuming single-particle characterization. We propose a method to estimate the contributions of light-absorbing, primarily refractory black carbon (rBC), particles to INP populations by selectively removing them prior to determination of INP concentrations. Absorbing particles are heated to their vaporization temperature using laser induced incandescence in a single particle soot photometer (SP2) and the change in INP number concentrations, compared to unheated samples, is assessed downstream in the CSU Continuous Flow Diffusion Chamber (CFDC). We tested this approach in the laboratory using strongly-absorbing and nonabsorbing aerosol types to confirm effective removal of r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call