Abstract

This paper proposed a new method for characterizing limited material data of high-entropy alloys (HEAs) based on the feature engineering and machine learning (ML). The descriptor dimensionality is augmented from original small dimension to a high dimension by non-linear combination based on feature engineering to characterize this kind material. To avoid overfitting, we carried out 5-fold cross-validation to evaluate the generalization performance of the model. The results showed that this method could achieve higher accuracy in predicting the phase formation of HEAs. Except the prediction of HEAs, this method also can be applied to other materials with limited data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.