Abstract
Reliable and good quality of service for speech transmission over wireless network has been a major challenge for the communication engineers and researchers. In this paper a new technique of speech compression and transmission using different Daubechies wavelets in a space time block coded co-corporative MIMO–OFDM networks using time and space diversity has been proposed. The main focus has been laid on design and development of wavelet based compression of multimedia signals for cooperative MIMO–OFDM system. We tried to find out various major issues regarding the wavelet compression of a speech signal. These issues include choice of a wavelet, decomposition level and thresholding criteria suitable for speech compression and transmission in co-operative MIMO–OFDM systems. A wavelet based speech compression technique using hard and soft thresholding algorithm has been proposed. The work shows that wavelet compression with QPSK modulation is a promising compression technique in a cooperative MIMO–OFDM system which makes use of the elegant theory of wavelets. The performance has been evaluated using mean square error, peak signal to noise ratio, compression ratio, bit error rate, and retained signal energy. It has been found that the transmitted speech signal is retrieved well under noisy conditions at higher order Daubechies wavelets. From the results it is clear that proposed technique aims at a radio access technology that can provide service performance comparable to that of current fixed Line accesses. To evaluate the performance of the proposed method, various performance parameters have been compared with previously implemented techniques and it has been found that the proposed work shows better performance as compared to the already existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.