Abstract
A new method of solving the best approximate solution for nonlinear fractional equations with smooth and nonsmooth solutions in reproducing kernel space is proposed in the paper. The nonlinear equation outlines some important equations, such as fractional diffusion-wave equation, nonlinear Klein–Gordon equation and time-fractional sine-Gordon equation. By constructing orthonormal bases in reproducing kernel space using Legendre orthonormal polynomials and Jacobi fractional orthonormal polynomials, the best approximate solution is obtained by searching the minimum of residue in the sense of . Numerical experiments verify that the method has higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.