Abstract

A new and simple mathematical formulation that is employed to analyze numerically coupled-mode equations modeling uniform and non-uniform gratings in optical fiber is investigated. This method would be straightforward and thus beneficial to solve multimode coupled equations in comparison with a previously used fundamental matrix method, and the Runge--Kutta algorithm. The new formulation proposed in this study is applied to calculate transmission and reflection spectra of core mode and higher-order cladding modes of acoustically induced superstructure modulation caused by microbending through fiber Bragg gratings (FBGs). Co-directional and contra-directional couplings based on acoustically induced modulation in FBGs have been discussed for a variety of induced coupling coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.