Abstract

First-order phase transitions of binary mixtures at the given pressure (P) and temperature (T) are studied by taking into account the composition fluctuations. Isothermal-isobaric semigrand canonical ensemble is adopted to find the relations among the total number of molecules, the composition fluctuations and Gibbs free energy density. By combining two identical subsystems of mixtures successively, the free energy density is transformed until being stable and its linear segments represent phase transitions. A new method is developed to calculate the phase equilibriums of binary mixtures. The method handles multiple types and number of phase equilibriums at single time and its solutions are physically justified. One example is shown for calculating the phase diagram of binary Lennard-Jones mixture. It demonstrates that the fluctuations of the total number of molecules in mixtures are fundamental behind phase transitions and the van der Waals loops in Gibbs free energy are reasonable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.