Abstract

Diffuse reflection laser ranging is one of the feasible ways to realize high precision measurement of the space debris. However, the weak echo of diffuse reflection results in a poor signal-to-noise ratio. Thus, it is difficult to realize the real-time signal extraction for diffuse reflection laser ranging when echo signal photons are blocked by a large amount of noise photons. The Genetic Algorithm, originally evolved from the idea of natural selection process, is a heuristic search algorithm which is famous for the adaptive optimization and the global search ability. To the best of our knowledge, this paper is the first one to propose a method of real-time signal extraction for diffuse reflection laser ranging based on Genetic Algorithm. The extraction results are regarded as individuals in the population. Besides, short-term linear fitting degree and data correlation level are used as selection criteria to search for an optimal solution. Fine search in the real-time data part gives the suitable new data quickly in real-time signal extraction. A coarse search in both historical data and real-time data after the fine search is designed. The co-evolution of both parts can increase the search accuracy of real-time data as well as the precision of the history data. Simulation experiments show that our method has good signal extraction capability in poor signal-to-noise ratio circumstance, especially for data with high correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.