Abstract
A new k-anonymous method which is different from traditional k-anonymous was proposed to solve the problem of privacy protection. Specifically, numerical data achieves k-anonymous by adding noises, and categorical data achieves k-anonymous by using randomization. Using the above two methods, the drawback that at least k elements must have the same quasi identifier in the k-anonymous data set has been solved. Since the process of finding anonymous equivalence is very time consuming, a two-step clustering method is used to divide the original data set into equivalence classes. First, the original data set is divided into several different sub-datasets, and then the equivalence classes are formed in the sub-datasets, thus greatly reducing the computational cost of finding anonymous equivalence classes. The experiments are conducted on three different data sets, and the results show that the proposed method is more efficient and the information loss of anonymous dataset is much smaller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.