Abstract

The main principles of a new method of growing bulk single-crystal AlN, AlGaN, and GaN films with thickness from 100 μm and more on silicon substrates with a buffer silicon carbide layer with its subsequent detachment from Si substrates are presented. The main substance of this method is a combination of the method of chloride-hydride epitaxy that determines high growth rates of III nitride layers and the use a Si substrate with a buffer layer of nanoscale SiC film grown by the atomic substitution method as the growth substrate. The Si substrate with a SiC layer grown by the atomic substitution method has a number of structural, physical, and chemical features as compared to SiC layers grown on Si by the standard methods. It is shown that it is precisely this feature that enables the growth on their surfaces of thick crack-free AlN, AlGaN, and GaN layers with subsequent and quite simple their detachment from the substrate. The single-crystal crack-free AlN layers with thickness to 300 μm, AlGaN layers with thickness to 400 μm, GaN layers with thickness to 200 μm, and GaN films of the semipolar ($$11\bar {2}4$$) orientations with thickness to 30 μm have been grown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.