Abstract

A new method of detecting flow separation for static and pitching airfoils is described, with application to the generation of stall maps for helicopter rotors. An airfoil is heated using a lamp, and a high-speed infrared camera monitors the surface temperature. Subtracting consecutive images and performing a spatial standard deviation over a region of interest yields a single \(\sigma \hbox {DIT}\) value which is used to detect boundary layer separation on the airfoil. The data can be analysed to identify attached flow (low values of \(\sigma \hbox {DIT}\)) and separated flow (high values of \(\sigma \hbox {DIT}\)). Although appropriate filtering can significantly improve the signal-to-noise ratio, the method is robust regarding the exact method of analysis and the unfiltered data are sufficiently clear to be analysed without additional processing. For the test airfoil used, stall was measured up to a pitching frequency of 5 Hz, and signal-to-noise ratios indicate that it should be possible to measure stall for a pitching frequency of 20 Hz for a carbon-fibre surface with the thermal properties used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.