Abstract
This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Pade approximants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Japan Journal of Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.