Abstract

Handing uncertain information is one of the research focuses currently. For the sake of great ability of handing uncertain information, Dempster-Shafer evidence theory (D-S theory) has been widely used in various fields of uncertain information processing. However, when highly contradictory evidence appears, the results of the classical Dempster combination rules (DCR) can be counterintuitive. Aiming at this defect, by considering the relationship between the evidence and its own characteristics, the proposed method is a new method of conflicting evidence management based on non-extensive entropy and Lance distance in uncertain scenarios. Firstly, the Lance distance function is used to measure the degree of discrepancy and conflict between evidences, and the credibility of evidence is expressed by matrix. Introducing non-extensive entropy to measure the amount of information about evidence and express the uncertainty of evidence. Secondly, the discount coefficient of the final fusion evidence is measured by considering the credibility and uncertainty of the evidence, and the original evidence is modified by the discount coefficient. Then, the final result is obtained by evidence fusion with DCR. Finally, two numerical examples are provided to illustrate the efficiency of the proposed method, and the utility of our work is demonstrated through an application of the active lane change to avoid obstacles to the autonomous driving of new energy vehicles. The proposed method has a better identification accuracy, reaching 0.9811.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call