Abstract

The Chi-square calibration for the empirical loglikelihood ratio refers to the method of approximating quantiles of the finite sample distribution of the empirical loglikelihood ratio with that of the limiting Chi-square distribution. Empirical likelihood ratio confidence regions are usually computed with the Chi-square calibration. Such Chi-square calibrated confidence regions can have a serious undercoverage problem. This paper examines the undercoverage problem from a finite sample standpoint and proposes a method of calibration which approximates the finite sample distributions with a new family of distributions. The new distributions is another family of sampling distributions arising from the normal distributions and is derived through a simple finite sample similarity between the empirical and parametric likelihoods. The new method of calibration is as easy to use as the Chi-square calibration. It corrects the undercoverage problem of the Chi-square calibration and is consistently more accurate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.