Abstract

At present, reliable ambiguity resolution in GPS precise point positioning (PPP) can be achieved through the traditional model called “EWL-WL-NL”. In this paper, we proposed a new model of ambiguity resolution,“WL-WL-WL”, where making use of linear independence of coefficient vector of wide-lane combination. Firstly, using the Melbourne-Wubbena combination observable on L2 and L5, we could resolve extra-wide-lane ambiguity instantaneously. Then, the resolved unambiguous extra-wide-lane carrier-phase assists wide-lane ambiguity resolution (AR). Three wide-lane combinations whose coefficient vectors are linearly independent are chosen to compose one full-rank matrix so that the three narrow-lane ambiguity resolution can be achieved. As a result, with the triple-frequency signals, the correctness rate of narrow-lane ambiguity resolution achieves 90% within 60s, in contrast to only 63% within 180s in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes and the efficiency of ambiguity resolution in triple-frequency PPP is higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.