Abstract
Sensory receptors often receive strongly dynamic, or time varying, inputs in their natural environments. Characterizing their dynamic properties requires control and measurement of the stimulus over a frequency range that equals or exceeds the receptor response. Techniques for dynamic stimulation of olfactory receptors have lagged behind other major sensory modalities because of difficulties in controlling and measuring the concentration of odorants at the receptor. We present a new method for delivering olfactory stimulation that gives linear, low-noise, wide frequency range control of odorant concentration. A servo-controlled moving bead of silicone elastomer occludes the tip of a Pasteur pipette that releases odorant plus tracer gas into a flow tube. Tracer gas serves as a surrogate indicator of odorant concentration and is measured by a photoionization detector. The system has well-defined time-dependent behavior (frequency response and impulse response functions) and gives predictable control of odorant over a significant volume surrounding the animal. The frequency range of the system is about 0-100 Hz. System characterization was based on random (white noise) stimulation, which allows more rapid and accurate estimation of dynamic behavior than deterministic signals such as sinusoids or step functions. Frequency response functions of Drosophila electroantennograms stimulated by fruit odors were used to demonstrate a typical application of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.