Abstract
The minimum concave cost transportation problem is the benchmark problem in numerical computing and it has been used widely in the schedule of smart transportation. In this paper, a deterministic annealing neural network algorithm is proposed to solve the minimum concave cost transportation problem. The algorithm is derived from two neural network models and Lagrange-barrier functions. The Lagrange function is used to handle linear equality constraints and the barrier function is used to force the solution to move to the global or near-global optimal solution. The computer simulations on test problem are made and the results indicate that the proposed algorithm always generates global or near global optimal solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.