Abstract

Thermolysin, a representative zinc metalloproteinase from Bacillus thermoproteolyticus, is synthesized as inactive pre-proenzyme and receives autocatalytic cleavage of the peptide bond linking the pro- and mature sequences. The conventional expression method for recombinant thermolysin requires the autocatalytic cleavage, so that production of a mutant thermolysin is affected by its autocatalytic digestion activity. In this study, we have established a new expression method that does not require the autocatalytic cleavage. The mature sequence of thermolysin containing an NH(2)-terminal pelB leader sequence and the pre-prosequence of thermolysin were co-expressed constitutively in Escherichia coli as independent polypeptides under the original promoter sequences in the npr gene which encodes thermolysin. Unlike the conventional expression method, not only the wild-type thermolysin but also mutant thermolysins [E143A (Glu143 is replaced with Ala), N112A, N112D, N112E, N112H, N112K and N112R] were produced into the culture medium. The wild-type enzyme expressed in the present method was indistinguishable from that expressed in the conventional method based on autocatalytic cleavage, as assessed by hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester. The present method should be useful especially for preparation of active-site mutants of thermolysin, which might have suppressed autocatalytic digestion activity. The results also demonstrate clearly that the covalent linking between the pro- and mature sequences is not necessary for the proper folding of the mature sequence by the propeptide in thermolysin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.