Abstract

We propose an innovative numerical scheme (based on complex variable techniques) for the calculation of the effective properties of a composite containing unidirectional periodic fibers in which we additionally incorporate the separate contribution of the ‘interface effect’ between the fibers and the surrounding material. The incorporation of interface effect into the model of deformation allows our model to accommodate the general class of nanocomposite materials, a fast growing area of research and our primary focus in this paper. The composite is loaded by a constant normal strain along the direction parallel to the fibers and by a uniform remote loading in the plane perpendicular to the fibers. Our method is based on the analysis of a representative unit cell with periodic boundary conditions imposed on its edge. Several examples are presented to study the influence of the interface and the volume fraction of the fibers on the effective properties of the composite and the interfacial stress field. We show that when the volume fraction falls below roughly 9%, the interfacial stress distribution recovers effectively to that corresponding to a single fiber with the same interface parameters embedded within an infinite matrix. We find also that if the shear modulus of the fibers exceeds approximately two and a half times that of the matrix, the interface effect is negligible in the determination of the effective properties of the corresponding nanocomposites. Finally, we show that the use of traditional effective medium theories may induce significant errors in the determination of transverse effective properties (in the plane perpendicular to the fibers) of the composite, in particular when the fibers are significantly softer than the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.