Abstract

Atmospheric turbidity is usually measured using either a pyrheliometer fitted with a red RG630 filter or a Volz sun photometer, the turbidity coefficients so determined being designated as β and B, respectively. Both techniques are subject to error, the former in underestimating high turbidities and the latter in giving rise to errors at low turbidities. The present paper describes a new, simpler and less expensive method of evaluating B from measurements of direct and diffuse solar radiation, made as a routine at principal radiation stations. Using a theoretical model for determining the attenuation of solar radiation due to absorption and scattering by water vapour and other gases, dust and aerosols in the atmosphere, an expression for the ratio of diffuse to direct solar radiation D/I h , is derived as a function of β. Then, from the hourly mean values of global and diffuse solar radiation routinely recorded at principal radiation stations, D/I h is calculated. β can now be readily evaluated using a special nomogram based on the formula relating β to D/I h . The values of B derived for Indian stations using the above technique show remarkable internal consistency and stability, proving its utility and reliability. DOI: 10.1111/j.1600-0889.1984.tb00051.x

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.