Abstract

The free-living SAR11 clade is a globally abundant group of oceanic Alphaproteobacteria, with small genome sizes and rich genomic A+T content. However, the taxonomy of SAR11 has become controversial recently. Some researchers argue that the position of SAR11 is a sister group to Rickettsiales. Other researchers advocate that SAR11 is located within free-living lineages of Alphaproteobacteria. Here, we use the natural vector representation method to identify the evolutionary origin of the SAR11 clade. This alignment-free method does not depend on any model assumptions. With this approach, the correspondence between proteome sequences and their natural vectors is one-to-one. After fixing a set of proteins, each bacterium is represented by a set of vectors. The Hausdorff distance is then used to compute the dissimilarity distance between two bacteria. The phylogenetic tree can be reconstructed based on these distances. Using our method, we systematically analyze four data sets of alphaproteobacterial proteomes in order to reconstruct the phylogeny of Alphaproteobacteria. From this we can see that the phylogenetic position of the SAR11 group is within a group of other free-living lineages of Alphaproteobacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.