Abstract
We propose a new method for investigating the evolution of the properties of the blazar brightness variability on timescales from a few hours to a few days. Its essence lies in detecting sequentially located time intervals along the entire light curve, within which it is possible to determine the characteristic time of variability using the structure function. We applied this method to uniform data series lasting several days provided by the TESS mission for blazar S5 1803+784. Then, we analyzed the found time parameters of variability coupled with the data of B-, V-, R-, and I-photometric observations. A correlation was found between the amplitude and the characteristic time of variability. The relation of these values with the spectral index of radiation has not been revealed. We conclude that the variability on a short time scale is formed due to the different Doppler factors for having different volume parts of the optical emitting region. At the same time, the radiation spectrum deflects slightly from the power-law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.