Abstract

In this paper, we propose a projection dynamical system for solving the split equality problem, or more generally the approximate split equality problem, in Hilbert spaces. The proposed dynamical system endows with the continuous behavior with time for Moudafi’s alternating CQ-algorithm and Byrne and Moudafi’s extended CQ-algorithm. Under mild conditions, we prove that the trajectory of the dynamical system converges weakly to a solution of the approximate split equality problem as time variable t goes to $+\infty $. We further derive the exponential-type convergence provided that a bounded linear regularity property holds for the approximate split equality problem. Several numerical examples are given to demonstrate the validity and transient behavior of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.