Abstract

A new separation method using gas hydrate formation is proposed for separating HFC-134a from gas mixtures containing N2 and HFC-134a. The feasibility of this separation method was investigated from various points of view. First, to determine the mixed hydrate stability region, three-phase equilibria of hydrate (H), liquid water (Lw), and vapor (V) for HFC-134a + N2 + water mixtures with various HFC-134a vapor compositions were closely examined in the temperature and pressure ranges of 275-285 K and 0.1-2.7 MPa, respectively. Second, the compositions of the hydrate and vapor phases at a three-phase equilibrium state were analyzed for identical mixtures at 278.15 and 282.15 K to confirm the actual separation efficiency. Third, kinetic experiments were performed to monitor the composition change behavior of the vapor phase and to determine the time required for an equilibrium state to be reached. Furthermore, X-ray diffraction confirmed that the mixed HFC-134a + N2 hydrates were structure II. Through an overall investigation of the experimental results, it was verified that more than 99 mol % HFC-134a could be obtained from gas mixtures after hydrate formation and subsequent dissociation processes. Separation of HFC-134a using hydrate formation can be carried out at mild temperature and low-pressure ranges. No additive is needed to lower the hydrate formation pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.