Abstract

The performance of machines and equipment degrades as a result of aging and wear. This decreases performance reliability and increases the potential for faults and failures. To ensure proper functionality of complex systems, advanced technologies for performance diagnosis and control are being incorporated into engineering designs, which requires an ever-increasing number of sensors and measurement devices. Nevertheless, a sensor, just as any other dynamic system, degrades and fails. A faulty sensor may cause process performance degradation, process shut down, or even a fatal accident because it is no longer able to deliver accurate information about the monitored system. Therefore, it is essential to assess sensor performance to ensure system reliability. In this paper, a method is proposed to detect, isolate, and compensate sensor degradation. The numerical algorithm for subspace state space system identification is used to track the changes of the time constants and gains of the sensor and the monitored system. Without imposing requirements for redundant sensors and measurement devices, this method utilizes the fact that sensor readings depict dynamic characteristics of the sensors as well as those of the monitored system. The newly proposed method is verified in angular sensor degradation detection using high-fidelity simulations of an automotive electronic throttle system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call