Abstract

A rapid, high-resolution and effective new method for analyzing 12 diuretics by CE-ESI-MS was established in this paper. Ten diuretics (except two neutral compounds) could be fast separated by CE with a DAD at 214 nm with a 20 kV voltage within 6 min, using a 50 microm id and 48.5 cm effective length uncoated fused-silica capillary in a 40 mM ammonium formate buffer (pH 9.40). CE was coupled to the mass spectrometer applying an orthogonal electrospray interface with a triple-tube sheath liquid arrangement. The sheath liquid was composed of isopropanol-water (1:1 v/v) containing 30 mM acetic acid with a flow rate of 4 microL/min. Mass spectrum was employed in the positive mode and both full scan mode and SIM scan mode were utilized. All 12 diuretics could be detected and confirmed by MS in a single analysis. Under optimized conditions, LODs for the 12 diuretics were in the range of 0.13-2.7 micromol/L at an S/N of 3, and the correlation coefficients R(2 )were between 0.9921 and 0.9978. The RDSs (n = 5) of the method was 0.24-0.94 % for migration times and 1.6-8.8 % for peak areas. The recoveries of spiked samples of 12 diuretics were between 72.4% and 118%. The real urine samples were injected directly for analysis, with only simple filtration through a 0.22 microm membrane filter in order to remove solid particles, which may cause capillary blockage. Based on the migration times and characteristic ions, the diuretics in urine samples were detected successfully. This CE-ESI-MS method for analyzing diuretics will hopefully be applied to doping control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.