Abstract

A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium-ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemical modification was performed to metallic lithium deposited on the anode surface due to previous plating with isopropanol (IPA). After this procedure an oxygenated species was detected by scanning electron microscopy (SEM), which later was confirmed as Li2 CO3 by Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). A valuation of the covered area by Li2 CO3 was carried out with an image analysis using energy-dispersive X-ray spectroscopy (EDX) and quantitative Rietveld refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.