Abstract
Green tomato extracts, an agro-food industry waste, are rich in the glycoalkaloid tomatine, which presents activity against several diseases. High-performance liquid chromatography (HPLC) with ultraviolet (UV) detection is one of the most used techniques for quantification of bioactive compounds. The aim of this study was to optimize and validate a selective HPLC method with diode array detector (DAD) for the quantitative analysis of tomatine extracted from green tomatoes by subcritical water. Chromatographic runs were performed on a InertSustain Phenyl (250 mm × 4.6 mm, 5 μm) analytical column, at a wavelength of 205 nm. A concentration range of 50-580 μg mL-1 was used. The validation process was performed considering the linearity, precision, trueness, limit of detection (LOD) and limit of quantitation (LOQ) of the method. The selected mobile phase composed of acetonitrile and a solution of 20 mmol L-1 potassium dihydrogen phosphate (KH2PO4) pH 3, resulted in suitable retention times and a standard calibration curve with adequate linearity (R2 = 0.9999). The method trueness was evaluated by the recovery assay, obtaining a mean recovery of 105% and the precisions were 1.4% and 0.9% (percentage relative standard deviation, RSD%) for the tomatine standard and extract samples, respectively. The inter-day variability was 2.7-9.0% (RSD%) for the standards and 6.9% (RSD%) for extract. The LOD and the LOQ of the method were determined at 8.0 and 24.1 μg mL-1, respectively. The herein described method was successfully used for the quantification of tomatine in a tomato-derived extract. Furthermore, the method constitutes a simple and rapid analytical approach able to be used as a routine protocol. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.