Abstract

Low-resistivity shales are widely developed in the Sichuan Basin. The production of low-resistivity shale gas reservoirs ranges from high to low to none. The existing methods for gas-content prediction cannot accurately predict the gas content of low-resistivity shale. This increases the risk of shale-gas exploration. To prove that the random forest algorithm has apparent advantages in predicting the gas content of low-resistivity shale and reducing the risks associated with shale-gas exploration and development, three prediction methods were selected in this paper to compare their effects. The first method is known as the grey-correlation multiple linear regression method. Low-resistivity shale-gas content logging series were optimized using the grey-correlation approach, and then the low-resistivity shale-gas-content prediction model was established using the multiple linear regression method. The second method we selected was the resistivity method. The improved water-saturation model was used to predict the water saturation of low-resistivity shale, and then the gas content of low-resistivity shale was predicted based on the free-gas content and the adsorbed-gas-content model. The random forest algorithm was the third method we selected. Fourteen logging series were used as input data and the measured gas content was used as supervised data to train the model and to apply the trained model to the gas-content prediction. The findings demonstrated that the grey-correlation multiple regression method had poor accuracy in predicting gas content in low-resistivity shale; The resistivity method accurately predicted water saturation, and the predicted gas content was higher than the actual gas content. Because the random forest algorithm accurately predicted low-resistivity shale-gas content, its use in the Sichuan Basin was advantageous. The selection of a low-resistivity shale-gas-content prediction model was guided by the research findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.