Abstract

In this paper propose a new approach to the problem of aggregating rankings for obtaining an overall ranking. This is also referred to as the aggregation ranking in the personnel selection problem. Our approach is based on a distance measure between the individual and the overall ranking, and looks for the solution that minimizes the disagreement between the input rankings and the resulting aggregation. The method uses a reinforcement learning approach to build the aggregation and its performance and comparison with other approaches shows promising results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.