Abstract

This paper presents a new method to determine the moisture content of solid wood based on the principle of dual-energy X-ray absorptiometry. The study investigates the theoretical relationship between X-ray wavelength and mass attenuation coefficients of wood, water, and reference substance. In accordance with this relationship, a theoretically obtained equation is proposed to calculate the moisture content in wood. The proposed equation is compared to experimental results using small blocks of sugi wood, which showed that the change in mass attenuation coefficient of wood with X-ray tube voltage increased with increasing moisture content as expected from the theoretical equation. A regression equation for moisture content estimation was determined based on the experimental results, and the standard error of estimate in the 0–120 % dry-basis moisture content range using the regression equation was determined to be 21.9 % with the most appropriate pair of tube voltages, 15 and 40 kVp. The accuracy of the method will be improved by reducing the duration of X-ray radiography and by increasing the disparity between paired tube voltages. This method has the potential to determine moisture content of solid wood using X-ray without oven-drying or assuming oven-dry density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call