Abstract

We present a new method for determining the spatial distribution and transport of water in porous media. It is based on the detection of both forward and backward scattered neutrons from the wet regions of the samples under investigation. The experimental set-up is based on a Pu-Be neutron source and He-3 neutron detector assemblies. The results obtained showed that back scattered neutrons are more sensitive than the forward scattered neutrons to determine water content. Moreover, both forward and back scattered neutrons are more sensitive than either back or forward neutrons for determining water content. The method was used to measure moisture transport in sand columns and brick samples. Forward and backward scattered neutrons from different wet regions along the water flow path (x) are recorded as the sample absorbs water. Water saturates the regions of the samples tested near the inlet of water faster than the others. The water front positions were found to follow the square root behavior of the absorption time, and capillary penetration coefficients were determined for the samples investigated. The developed method can be used to investigate water absorption at various flow rates in porous samples of various sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call