Abstract
Abstract. A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) is presented. The method is implemented within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF solver. The technique is applied to a 1-year aerosol chemical speciation monitor (ACSM) dataset from downtown Zurich, Switzerland. The measured organic aerosol mass spectra were analyzed by PMF using a small (14 d) and rolling PMF window to account for the temporal evolution of the sources. The rotational ambiguity is explored and the uncertainties of the PMF solutions were estimated. Factor–tracer correlations for averaged seasonal results from the rolling window analysis are higher than those retrieved from conventional PMF analyses of individual seasons, highlighting the improved performance of the rolling window algorithm for long-term data. In this study four to five factors were tested for every PMF window. Factor profiles for primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning (BBOA) were constrained. Secondary organic aerosol was represented by either the combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA, respectively) or by a single OOA when this separation was not robust. This scheme led to roughly 40 000 PMF runs. Full visual inspection of all these PMF runs is unrealistic and is replaced by predefined user-selected criteria, which allow factor sorting and PMF run acceptance/rejection. The selected criteria for traffic (HOA) and BBOA were the correlation with equivalent black carbon from traffic (eBCtr) and the explained variation of m/z 60, respectively. COA was assessed by the prominence of a lunchtime concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated based on the fractions of m/z 43 and 44 in their respective factor profiles. Seasonal pre-tests revealed a non-continuous separation of OOA into SV-OOA and LV-OOA, in particular during the warm seasons. Therefore, a differentiation between four-factor solutions (HOA, COA, BBOA and OOA) and five-factor solutions (HOA, COA, BBOA, SV-OOA and LV-OOA) was also conducted based on the criterion for SV-OOA. HOA and COA contribute between 0.4–0.7 µg m−3 (7.8 %–9.0 %) and 0.7–1.2 µg m−3 (12.2 %–15.7 %) on average throughout the year, respectively. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6 µg m−3, 12.0 %), slightly higher mean concentrations during spring and fall (1.0 and 1.5 µg m−3, or 15.6 % and 18.6 %, respectively), and the highest mean concentrations during winter (1.9 µg m−3, 25.0 %). In summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4 µg m−3 (26.5 %) and 2.2 µg m−3 (40.3 %), respectively. For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3 to 1.1 µg m−3 (3.4 %–15.9 %), from 0.6 to 2.2 µg m−3 (7.7 %–33.7 %) and from 0.9 to 3.1 µg m−3 (13.7 %–39.9 %), respectively. The relative PMF errors modeled for this study for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA are on average ±34 %, ±27 %, ±30 %, ±11 %, ±25 % and ±12 %, respectively.
Highlights
Atmospheric aerosols are at the center of scientific and political air quality discussions due to their highly uncertain direct and indirect climate effects (IPCC, 2013) and negative impact on human health (e.g., Peng et al, 2005)
A rolling-window positive matrix factorization (PMF) algorithm was applied to NR-PM1 organic data measured with an aerosol chemical speciation monitor (ACSM) between February 2011 and February 2012 in downtown Zurich, Switzerland
The rolling approach allows for a source apportionment of time-dependent factor profiles and has several advantages, e.g., very fast PMF runs of rather small PMF runs compared to conventional batch analysis or one factor per source compared to several factors in batch analysis to cope with time-varying factor profiles
Summary
Atmospheric aerosols are at the center of scientific and political air quality discussions due to their highly uncertain direct and indirect climate effects (IPCC, 2013) and negative impact on human health (e.g., Peng et al, 2005) Regulatory policies addressing these effects require characterization and understanding of aerosol physicochemical properties, sources and formation processes. The resulting aerosol data can be utilized to study seasonal trends of PM1 sources to support emission reduction strategies This is highly relevant for very polluted areas like China and India and for Europe, where particulate matter concentrations substantially decreased during the last 2 decades but still frequently exceed legal thresholds (Barmpadimos et al, 2011, 2012; European Environment Agency, 2019)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.