Abstract

SUMMARYBased on the terminal constraints system (TCS) and reciprocal screw theory, a novel method is presented to determine the isotropic configurations of limited degree-of-freedom (DOF) parallel manipulators. From the available physical meaning of isotropy, the criteria to determine the isotropic configurations can be transformed to investigate whether the TCS acting on the moving platform works equally well in all directions. From the TCS study, the simplest form of constraints system matrix can be obtained. Then the constraint condition number is defined to measure the isotropy of spatial parallel manipulator based on the TCS. This method not only avoids solving the Jacobian matrix for some complex structural parallel manipulators but also points out the physical meaning of isotropy, which indicates that the TCS acting on the moving platform works equally well in all directions. Three examples are employed to illustrate this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.