Abstract
Early diagnosis and prevention play a crucial role in the treatment of patients with ARDS. The definition of ARDS requires an arterial blood gas to define the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2 ratio). However, many patients with ARDS do not have a blood gas measured, which may result in under-diagnosis of the condition. Using data from MIMIC-III Database, we propose an algorithm based on patient non-invasive physiological parameters to estimate P/F levels to aid in the diagnosis of ARDS disease. The machine learning algorithm was combined with the filter feature selection method to study the correlation of various noninvasive parameters from patients to identify the ARDS disease. Cross-validation techniques are used to verify the performance of algorithms for different feature subsets. XGBoost using the optimal feature subset had the best performance of ARDS identification with the sensitivity of 84.03%, the specificity of 87.75% and the AUC of 0.9128. For the four machine learning algorithms, reducing a certain number of features, AUC can still above 0.8. Compared to Rice Linear Model, this method has the advantages of high reliability and continually monitoring the development of patients with ARDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.