Abstract

Accurate and reliable estimation of the heart rate using wearable devices, especially during physical exercise, must deal with noisy signals that contain motion artifacts. We present an approach that is based on photoplethysmographic (PPG) signals which are measured with two wrist-type pulse oximeters. The heart rate is related to intensity changes of the reflected light. Our proposed method suppresses the motion artifacts by adaptively estimating the transfer functions of each of the three-axis acceleration signals that produce the artifacts in the PPG signals. We combined the output of the six adaptive filters into a single enhanced time-frequency domain signal based on which we track the heart rate with a high accuracy. Our approach is real-time capable, computationally efficient and real data results for a benchmark data set illustrate the superior performance compared to a recently proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.