Abstract

Data augmentation is a commonly used approach for addressing the issue of limited data availability in machine learning. There are various methods available, including classical and modern techniques. However, when applying modern data augmentation methods, such as Generative Adversarial Neural Networks (GANs), to a class specific data, the resulting data can exhibit structural discrepancies. This study explores a different use of GANs as a data augmentation method that solves this problem using the electrocardiogram (ECG) signals in the MIT-BIH arrhythmia dataset as the example. We begin by examining the cluster structure of a specific class using t-Distributed Stochastic Neighbor (t-SNE) method. Based on this cluster structure, we propose a new method for applying GANs to augment data for that class. We assess the effect of our method in a classification task using 1-D Convolutional Neural Network (CNN), Support Vector Machine (SVM), One vs one classifier (Ovo), K-Nearest Neighbors (KNN), and Random Forest as the classifiers. The results demonstrate that our proposed method could lead to better classification performance if a specific class has distinct clusters when compared to normal use of GANs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.