Abstract

Treatment of 2,4‐dinitropentane with bromine and sodium methoxide in methanol, affords formation of an ether product, 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane, in 59% yield as a mixture of three diastereomers. This observation has led to a general synthesis of 3‐alkoxy‐2,4‐dibromo‐2,4‐dinitropentanes, obtained in 75‐86% yield from 2,4‐dibromo‐2,4‐dinitropentane as the preferred reactant. 4‐Bromo‐2,4‐dinitro‐2‐pentene has been identified as an intermediate in these reactions. The nitroalkene has been isolated and undergoes conjugate addition with alkoxides to afford the same ether products after brominative work‐up. The nitroalkene undergoes conjugate addition with sodium azide to give 3‐azido‐2,4‐dibromo‐2,4‐dinitropentane in 38% yield as a mixture of two isomers in which the (R*,R*) isomer predominates. Sequential treatment of 2,4‐dibromo‐2,4‐dinitropentane with sodium methoxide followed by sodium iodide and acetic acid gives 3‐methoxy‐2,4‐dinitropentane in 63% yield, the overall product of simple methoxylation of 2,4‐dinitropentane. However, attempted complete debromination of 2,4‐dibromo‐3‐methoxy‐2,4‐dinitropentane with excess sodium iodide and acetic acid results only in monodebromination to give 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 86% yield. Likewise, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane is formed in 93% yield from the ethoxy analog. A mechanistic rationale is offered for condition‐specific removal of the second Br atom in these reactions. Treatment of 3‐methoxy‐2,4‐dinitropentane with potassium acetate/iodine in dimethyl sulfoxide affords formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide in 30% yield as a single diastereomer. Conversion of 2‐bromo‐3‐methoxy‐2,4‐dinitropentane in 15% yield to 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide is also possible by using potassium acetate in dimethyl sulfoxide. The mechanistic pathways for formation of 4,5‐dihydro‐3,4‐dimethyl‐3‐methoxy‐4‐nitroisoxazole 2‐oxide apparently involve unstable 3‐methoxy‐1,2‐dimethyl‐1,2‐dinitrocyclopropane as the common intermediate. Similarly, 2‐bromo‐3‐ethoxy‐2,4‐dinitropentane affords 4,5‐dihydro‐3‐ethoxy‐3,4‐dimethyl‐4‐nitroisoxazole 2‐oxide in 13% yield. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call