Abstract

In this paper, a new and efficient method for solving affine sub-families included in a family of nonlinear feedback shift register (NFSR) sequences is proposed. The linear case is focused on since the affine case is an analogy. Let f(x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ,x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> ,...,x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> ) = x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ⊕f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> (x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> ,...,x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n-1</sub> )⊕x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> be a characteristic function of an n-stage NFSR, where n is a positive integer. Let deg(f) = d > 1 and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[d]</sub> be the summation of all terms in the algebraic normal form of f whose degrees attain the maximum d. First, it is proved that every linear sub-family of G(f) is a sub-family of linear feedback shift register sequences generated by a characteristic polynomial of the form Σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i∈S</sub> c <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> x <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> , where c <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> ∈ F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and S consists of all subscripts of variables appearing in f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[d]</sub> . That is to say, every linear sub-family of G( f ) is a factor of some polynomial Σ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i∈S</sub> c <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sub> x <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i</sup> over the finite field F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . This result is a well generalization of linear recurring sequences theory since it also holds if d = 1. Based on this result, a candidate set of linear sub-families could be obtained by polynomial factorizations over F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> . Second, we propose a new method to verify a linear sub-family whose memory requirement and time complexity are clearer than the previous method. For instance, all affine sub-families of the 160-bit main register used in Grain v1 could be determined within two seconds by a PC using the new method in this paper, which is unobtainable for previous algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call