Abstract

In this study, the side capacity of drilled shaft foundations is estimated from partially-mobilized load–displacement field data using a new method in the extrapolation of load–displacement response. A dataset of 138 bi-directional load tests is used to evaluate the degree of mobilization of unit side resistance. A total of 612 unit side-resistance curves obtained from measured strain gauge recordings are utilized in this study. The proposed extrapolation approach is based on a new technique, the Double Tangent method, characterizing the extent of mobilization for each unit side-resistance curve. Roughly, 12% of the dataset exhibits a fully-mobilized load–displacement response, with the remainder exhibiting varying degrees of a partially-mobilized response. Fully-mobilized records are further characterized using the Double Tangent method over different ranges of mobilization, resulting in four regression models based on predominant soil types. Each model is assessed statistically, and a global regression model is found suitable to predict maximum unit side resistance. The global model is further validated using two independent load test datasets, comparing measured values of unit side resistance against predicted values. The model is then used to predict maximum unit side resistance for all partially-mobilized data within the dataset, and the results are compared to two extrapolation techniques currently used in practice. The corresponding resistance-displacement response is extrapolated using a proposed asymptotic curve-fitting function for side resistance, and an example extrapolation is illustrated to showcase how the proposed method can be used in engineering practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call