Abstract

AbstractThe purpose of this paper is to report on a new and efficient method for the evaluation of singular integrals in stress analysis of elastic and elasto‐plastic solids, respectively, by the direct boundary element method (BEM). Triangle polar co‐ordinates are used to reduce the order of singularity of the boundary integrals by one degree and to carry out the integration over mappings of the boundary elements onto plane squares. The method was subsequently extended to the cubature of singular integrals over three‐dimensional internal cells as occur in applications of the BEM to three‐dimensional elasto‐plasticity. For this purpose so‐called tetrahedron polar co‐ordinates were introduced. Singular boundary integrals stretching over either linear, triangular, or quadratic quadilateral, isoparametric boundry elements and singular volume integrals extending over either linear, tetrahedral, or quadratic, hexahedral, isoparametric internal cells are treated. In case of higher order isoparametric boundary elements and internal cells, division into a number of subelements and subcells, respectively, is necessary. The analytical investigation is followed by a numerical study restricted to the use of quadratic, quadrilateral, isoparametric boundary elements. This is justified by the fact that such elements, as opposed to linear elements, yield singular boundary integrals which cannot be integrated analytically. The results of the numerical investigation demonstrate the potential of the developed concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.