Abstract

Abstract All galaxies are thought to reside within large haloes of dark matter, whose properties can only be determined from indirect observations. The formation and assembly of galaxies is determined from the interplay between these dark matter haloes and the baryonic matter they host. Although statistical relations can be used to approximate how massive a galaxy's halo is, very few individual galaxies have direct measurements of their halo masses. We present a method to directly estimate the total mass of a galaxy's dark halo using its system of globular clusters. The link between globular cluster systems and halo masses is independent of a galaxy's type and environment, in contrast to the relationship between galaxy halo and stellar masses. This trend is expected in models where globular clusters form in early, rare density peaks in the cold dark matter density field and the epoch of reionization was roughly coeval throughout the Universe. We illustrate the general utility of this relation by demonstrating that a galaxy's supermassive black hole mass and global X-ray luminosity are directly proportional to their host dark halo masses, as inferred from our new method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call