Abstract

In general, the power-law creep is used to calculate the activation energy in hot press powder sintering. However, associated difficulty is caused by its large amount of exploratory experiments and multiple creep mechanisms of metal powder with holding time at specific temperatures and macroscopic pressures. In the present study, we propose a new method combining the stress-temperature map of metals and the power-law creep equations, that allows for a faster determination of the creep temperature interval of metals, and finally an accurate determination of the creep mechanism in powder sintering. We verified the viability of this method by varying the pulse current frequency during spark plasma sintering of pure titanium powder. It is also concluded that the higher pulse current frequency is able to reduce the activation energy of pure titanium powder. Accordingly, the results obtained provides a labor-saving method to determine the activation energy of metals in powder sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.